Determining the absolute fraction of emitted Ps by GEANT4 supported analysis of gamma spectra

B. Rienäcker,^{1, 2,*} T. Gigl,² G. Nebbia,³ F. Pino,⁴ and C. Hugenschmidt²

 ¹Physics Department, CERN, 1211 Geneva 23, Switzerland
²Heinz Maier-Leibnitz Zentrum (MLZ), Technische Universität München, Lichtenbergstr. 1, 85748 Garching, Germany
³INFN Padova, via Marzolo 8, 35131 Padova, Italy
⁴Department of Physics and Astronomy "Galileo Galilei", University of Padova, Via Marzolo, 8, I-35131, Padova, Italy

*Email corresponding author: <u>b.rienaecker@cern.ch</u>

Experiments using positronium (Ps) often perform a spectrometer calibration with a germanium single crystal at high temperature in order to obtain a 100% Ps formation reference spectrum. However, the actual determination of the absolute Ps fraction remains demanding due to systematic influences.

Using GEANT4-simulated detector responses to 2γ and 3γ radiation sources inside the (coincidence) Doppler-broadening spectrometer at NEPOMUC, FRM II, we derived a reliable value for the Ps fraction reemitted from a Ge(100) target heated close to its melting point at low positron implantation energies.

By fitting the simulated spectra to the measured spectra we find an absolute value of $72 \pm 4\%$ maximum Ps formation, contradicting the 100% assumption.