

THE HENRYK NIEWODNICZAŃSKI INSTITUTE OF NUCLEAR PHYSICS POLISH ACADEMY OF SCIENCES

Effects of ionic liquid doping on gas transport properties of thermally rearranged poly(hydroxyimide)s

J. Dryzek¹, A. Wolińska-Grabczyk²

¹Institute of Nuclear Physics Polish Academy of Sciences, PL-31342 Krakow, Poland

²Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 M. Curie-Skłodowska Str., 41-819 Zabrze, Poland

Outline

- What is permeability
- Studied polyamides
- Cohen-Turnbull model for gaz molcules
 transport
- PALS and permeability results
- Conclusions

A lot of polymers present on the market are used in the packaging field, in direct contact or not with the food: polyolefins, copolymers of ethylene, substituted olefins, like polystyrene (PS), polyesters, polycarbonates (PC); polyamide (PA); acrylonitriles, regenerated cellulose. polylactic acid (PLA)

Polymer materials, in contrast to glass or metal packaging, are permeable at different degrees to small molecules like gases, water vapour, and organic vapour and to other low molecular weight compounds like aromas, flavour, and additives present into food. Permeability, as reported in the literature, is defined as the quantification of permeate transmission, gas or vapour, through a resisting material.

The gas permeation into semicrystalline polymers is then confined into the amorphous regions.

Henry's law for gases

Henry's law states that: at a **constant** temperature, the amount of a given gas that dissolves in a given type and volume of liquid is directly proportional to the partial pressure of that gas in equilibrium with that liquid.

$$C_{equil} = K_H \cdot p_{gas}$$

Fick's First Law $J = -D \cdot \Delta c$

For one-dimensional diffusion through a polymer membrane and in stationary conditions, can be written as

$J = -D \cdot \left(\frac{\Delta c}{l}\right)$

J - the diffusion flux, D - the diffusion coefficient or diffusivity Δc the concentration difference across the membrane thickness *I*.

When the diffusion mechanism is in its steady state, the equilibrium of the gas concentration c at the surface and the gas partial pressure p obey to Henry's law then:

$$J = -D \cdot \left(\frac{K_H \Delta p}{l}\right) = -P \cdot \frac{\Delta p}{l}$$

The permeability of a polymer to a gas, *P*, is defined as follows:

$$P \equiv \frac{N \cdot l}{f_2 - f_1}$$

N – is the steady-state gas flux through the film I - is the film thickness, f_2 and f_1 are the upstream (i.e., high) and downstream (i.e., low) fugacities of gas, respectively

(b) (a) Thermostat oven Feed gas Feed inlet gas Feed outlet gas O₂/N₂ mixture SILM Membrane cell O-ring seal μGC membrane Feed side Permeate gas MFC MFC MFC Permeate side Supprt of the membrane (metal plate with holes) X X gas permeation cell Mass flow controller Sweep inlet gas Sweep outlet gas (He) with permeated O₂ and N₂ He N_2 He O_2

Schematic image of (a) the apparatus and (b) the membrane cell used for the gas permeation test.

Gas permeate formula

$$P = 10^{-10} \frac{V_d \cdot l}{A \cdot T \cdot R \cdot p_2} \left[\left(\frac{dp_1}{dt} \right)_{ss} - \left(\frac{dp_1}{dt} \right)_{leak} \right]$$

 V_d - the downstream volume [cm³] A - the effective membrane are [cm²] T - the aboslute temperarure [K] R- the gas constant [cm Hg cm³ cm⁻² (STP) K⁻¹] p_2 - the feed absolute preassure [cm Hg]

- the rate of permeate absolute pressure for steady-state
- $\left(\frac{dp_1}{dt}\right)$ the rate of permeate absolute pressure for leak

Permeability coefficients are commonly expressed in Barrers, where 1 Barrer = 10^{-10} cm ³ (STP) cm/(cm² s cm Hg).

TABLE 2: Relative value of permeabilities for the most commercial polymer (no-dimensional value).

Polymer	N_2	O ₂	CO ₂
Polystyrene sheet	1	2.6	10.4
LLDPE	1	3.1	11.1
LDPE	1	3.1	10.7
HDPE film	1	3.2	11.9
PP film	1	4.3	13.6
Nylon 6 film	1	3.4	18.4
PET film	1	3.6	17.8

According Cohen –Turnbull model the diffusion coefficient of gases in polymers is as follows:

$$D = A \cdot R \cdot T \exp\left(-\frac{B}{V_f}\right)$$

R - the gas constant, T - temperature A and B - empirical constants, $V_{\rm f}$ - the average free volume of a polymer,

Average free volume can also be understood as a parameter representing the volume within the polymer, which is unoccupied by polymer chains.

M.H. Cohen, D. Turnbull, J. Chem. Phys. 31 (1959) 1164-1169

$$\ln P = A' - \frac{B'}{V_f}$$

F-E formula:

$$\tau_3[ns] = 0.5 \left[1 - \frac{R_f}{R_f + \Delta} + \frac{1}{2\pi} \sin\left(2\pi \frac{R_f}{R_f + \Delta}\right) \right]^{-1}$$

 $V_f = \frac{4\pi}{3} R_f^3$

K. Nocoń-Szmajda et al. Separation and Purification Technology 254 (2021) 117664-12

14 /32

Polymer preparation

The (co)polymers were synthesized from 4,4'-(hexa-fluoroisopropylidene)diphthalic anhydride (6FDA) and a mixture of 3,3'-dihydroxybenzidine (HAB) and 2,3,5,6-tetramethyl-1,4-phenylene diamine (4MPD) in a different molar ratio(HPI-1 – HPI-3), as well as poly(hydroxyimide) derived from 4,4'-bisphenol

A dianhydride (BPADA) and HAB (HPI-5) were chosen as TR membrane precursors to be doped with ionic liquid (IL).

1-Butyl-3-methylimidazolium tetrafluoroborate (IL)

The products are labeled as follows:

HPI-1 (6FDA-HAB), HPI-2 (6FDA-HAB-4MPD 3:1), HPI-3 (6FDA-HAB-4MPD 1:1), HPI-4 (6FDA-4MPD), HPI-5 (BPADA-HAB) Both, the pure and ionic liquid doped membranes, except for HPI-4 not containing the HAB moiety, were thermally treated to the corresponding polybenzoxazoles (**PBO**s).

The thermal rearrangement was carried out in a tube furnace under an argon atmosphere using a two-step heating program.:

-In the first step, the membrane was gradually heated to 300 °C at a rate of 10 °C min ⁻¹ and kept at this temperature for an hour.

-In the second step, the tempera ture was raised to 400 °C for the BPADA based membranes or to 440 °C for the 6FDA based ones, at a rate of 5 °C min $^{-1}$.

Chemical structures of studied polymers

Scheme 1. Chemical structures of the studied (co)polyimides (HPI) and schematic representation of thermal rearrangement of HAB based HPIs to PBOs.

Glass-transition temperatures and *d*-spacing values of the pure and doped (co) polyimide precursors (HPI) and their thermally rearranged analogues (PBO).

Polymer Code	IL content [wt. %]	T _g [°C] HPI	d-spacing [Å]	
			НЫ	РВО
HPI-1	0	277	5.5ª	6.2ª
HPI-1 IL 15	15	245	5.5	6.1
HPI-1 IL 20	20	220	5.4	6.1
HPI-2	0	290	5.9	6.2
HPI-2 IL 15	15	275	5.6	6.2
HPI-3	0	300	6.0	6.1
HPI-3 IL 15	15	290	5.7	6.2
HPI-4	0	406	6.1	-
HPI-4 IL 15	15	381	5.9	-
HPI-5	0	242	5.0 ^b	5.0 ^b
HPI-5 IL 15	15	208	4.9	5.2
HPI-5 IL 20	20	193	4.8	5.2

Mechanical properties (Young's modulus, *E*; tensile strength, *Rm*; elongation at break, *A*) of the pure and doped (co)polyimide precursors (HPI) and their thermally rearranged analogues (PBO).

Polymer Code	Mechanic	Mechanical Analysis of HPI			Mechanical Analysis of PBO		
oode	<i>E</i> [GPa] <i>Rm A</i> [MPa] [%]	E [GPa]	Rm [MPa]	A [%]			
HPI-1 ^a	3.06	137.2	8.1	PBO-1 ^a	2.3	49.9	2.4
HPI-1 IL 15	3.30	141.9	6.1	PBO-1 IL 15	2.6	25.6	1.0
HPI-1 IL 20	3.40	167.6	7.1	PBO-1 IL 20	2.53	17.8	0.7
HPI-2	2.62	141.3	12.3	PBO-2	1.87	68.4	4.9
HPI-2 IL	2.74	149.4	8.9	PBO-2 IL	2.02	35.8	2.1
15				15			
HPI-3	2.78	115.7	7.3	PBO-3	2.22	50.1	2.7
HPI-3 IL 15	2.35	112.7	7.6	PBO-3 IL 15	1.86	24.4	1.4
HPI-4	1.35	87.8	8.0				
HPI-4 IL 15	1.32	95.7	12.2				
HPI-5 ^a	3.09	120.8	15.9	PBO-5ª	2.05	112.5	11.2
HPI-5 IL 15	3.01	139.8	8.7	PBO-5 IL	1.97	73.8	5.2
HPI-5 IL 20	2.74	127.6	8.8	PBO-5 IL 20	1.64	30.2	1.7

20 /32

Gas permeabilities and ideal selectivities of the pure and IL doped (co)polyimide precursors (HPI); 30 °C, upstream pressure of 6 bar.

Polymer Code	Permeability [Barrer]			Ideal Selectivity			
-	N ₂	02	He	CO_2	$\alpha \; O_2/N_2$	α CO ₂ /N ₂	α He/N ₂
HPI-1	0.089	0.617	14.24	2.70	6.9	30.3	160
HPI-1 IL15	0.078	0.493	11.54	2.43	6.3	31.2	148
HPI-1 IL20	0.047	0.314	8.61	1.44	6.7	30.6	183
HPI-2	0.290	1.82	27.2	7.89	6.3	27.2	94
HPI-2 IL15	0.093	0.679	13.7	3.23	7.3	34.7	147
HPI-3	1.82	9.75	95.0	49.1	5.4	27.0	52
HPI-3 IL15	0.274	1.88	20.5	8.31	6.9	30.3	75
HPI-4	41.9	149	398	629	3.6	15.0	9.5
HPI-4 IL15	1.45	6.35	49.5	34.3	4.4	23.7	34
HPI-5	0.018	0.17	5.42	0.697	9.4	38.7	301
HPI-5 IL15	0.016	0.125	3.62	0.534	7.8	33.4	226
HPI-5 IL20	0.014	0.109	3.28	0.508	7.8	36.3	234

 $PN_2(3.64 \text{ Å}) < PO_2(3.46 \text{ Å}) < PCO_2(3.3 \text{ Å}) < P He(2.6 \text{ Å})$

21 /32

Gas permeabilities and ideal selectivities of the pure and IL doped thermally rearranged (co)polyimides (PBO); 30 °C, upstream pressure of 6 bar.

Polymer Code	Permeability [Barrer]				Ideal Selectivity		
	N ₂	O ₂	He	CO_2	$\alpha \; O_2/N_2$	α CO ₂ /N ₂	α He/N ₂
PBO-1	2.24	11.9	106	46.54	5.3	20.8	47
PBO-1 IL15	3.17	16.12	109	65.50	5.1	20.7	34
PBO-1 IL20	3.69	18.28	113	75.53	5.0	20.5	31
PBO-2	3.51	17.83	127	74.64	5.1	21.3	36
PBO-2 IL15	7.90	34.72	165	143	4.4	18.1	21
РВО-З	3.99	20.47	138	88.6	5.1	22.2	35
PBO-3 IL15	10.04	41.4	168	162	4.1	16.1	17
PBO-5	0.092	0.664	10.32	2.55	7.2	27.7	112
PBO-5 IL15	0.135	0.913	11.93	3.73	6.8	27.6	88
PBO-5 IL20	0.101	0.785	10.81	3.25	7.8	32.2	107

 $N_2 (3.64 \text{ Å}) < O_2 (3.46 \text{ Å}) < CO_2 (3.3 \text{ Å}) < He (2.6 \text{ Å})$

The measured values of the longest lifetime component τ_3 and its intensities I_3 , and the values of the free volume radius R, calculated according to Eq. (2), for the pure and IL doped (co)polyimide precursors (HPI).

Polymer Code	τ_3 [ns]	I ₃ [%]	<i>R</i> [nm]
HPI-1	2.32(18)	0.84(37)	0.310(15)
HPI-1 IL15	2.13(13)	0.61(5)	0.300(12)
HPI-1 IL20	2.29(8)	1.11(8)	0.310(7)
HPI-2	2.17(5)	1.88(10)	0.300(5)
HPI-2 IL15	2.31(16)	0.75(6)	0.310(14)
HPI-3	2.80(6)	4.95(51)	0.350(5)
HPI-3 IL15	2.36(7)	1.21(8)	0.320(5)
HPI-4	3.20(3)	8.3(22)	0.380(2)
HPI-4 IL15	2.22(7)	2.36(12)	0.300(6)
HPI-5	2.08(24)	0.68(14)	0.290(22)
HPI-5 IL15	1.92(12)	1.54(31)	0.280(12)
HPI-5 IL20	1.96(11)	0.67(18)	0.280(10)

The measured values of the longest lifetime component τ_3 and its intensities I_3 , and the values of the free volume radius R, calculated according to Eq. (2), for the pure and IL doped thermally rearranged (co)polyimides (PBO).

Polymer Code	τ_3 [ns]	I ₃ [%]	<i>R</i> [nm]
PBO-1	2.77(17)	16.40(45)	0.350(1)
PBO-1 IL15	2.84(2)	8.90(50)	0.350(2)
PBO-1 IL20	2.53(6)	4.86(47)	0.330(5)
PBO-2	2.92(1)	15.35(32)	0.360(1)
PBO-2 IL15	3.02(2)	10.84(42)	0.360(2)
PBO-3	2.99(3)	7.77(53)	0.360(2)
PBO-3 IL15	3.04(6)	9.50(97)	0.360(4)
PBO-5	2.04(1)	22.20(61)	0.290(1)
PBO-5 IL15	2.01(3)	10.73(77)	0.290(2)
PBO-5 IL20	2.02(2)	11.77(96)	0.290(2)

Fig. 3. Intensities, I_3 , of *o*-Ps annihilation in the pure and IL doped 6FDA based (co)polyimides. I_3 is taken from Table 3.

26 /32

27 /32

The values of the empirical constant B from determined from fitting of Eq.(11) to data from figures as the function of volume of the gas molecules calculated using kinetic diameter values. The straight line represents a linear function fitted to the experimental data.

He (2.6Å) < CO_2 (3.3Å) < O_2 (3.46Å) < H_2 (3.64Å)

Summary

The addition of IL was found to have a strong impact on the physical properties, thermal conversion process, as well as gas transport properties of the doped polymers.

The reduced T_g of the precursors (e.g. by 57 °C), and significantly decreased temperature of their conversion to PBO (e.g. by 126 °C) were observed as a result of IL doping.

By fitting the permeability and free volume size data to the Cohen-Turnbull model, it appeared that free volume determined by PALS strongly determines the permeability of gas molecules in these systems, Separation and Purification Technology 254 (2021) 117664

Contents lists available at ScienceDirect

Separation and Purification Technology

journal homepage: www.elsevier.com/locate/seppur

Effects of ionic liquid doping on gas transport properties of thermally rearranged poly(hydroxyimide)s

Klaudia Nocoń-Szmajda^a, Aleksandra Wolińska-Grabczyk^{a,*}, Andrzej Jankowski^a, Jerzy Dryzek^b, Ewa Dryzek^b, Henryk Janeczek^a, Eugenia Grabiec^a, Marta Musioł^a

^a Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 M. Curie-Skłodowska Str., 41-819 Zabrze, Poland ^b Institute of Nuclear Physics Polish Academy of Sciences, PL-31342 Krakow, Poland

Separation

echnolog

Thank you for your attention