Efficient positron trapping at a linac based positron source using a silicon carbide remoderator

L. Liszkay*, P. Comini, S. Niang, P. Pérez, J-Y Roussé, B. Vallage, D P van der Werf on behalf of the GBAR collaboration

*IRFU, CEA, Université Paris-Saclay, France

Outline

- The GBAR project and its positron line
- Buffer gas trap in the linac-based positron line
- Why use a remoderator?
- Changes in the trapping scheme
- Test setup and new trapping sequence
- Performance of the SiC moderator based setup
- Conclusions and outlook

The GBAR experiment at CERN

- Test of the weak equivalence principle with antihydrogen
- Aim: gravitational free fall of antihydrogen with 1 % precision
- ~10 μK is needed (~0.5 m/s)

 $\overline{p} + Ps \rightarrow \overline{H} + e^{-}$ $\overline{H} + Ps \rightarrow \overline{H}^{+} + e^{-}$

Cooling of neutrals to this temperature is not possible

Distinctive idea: use positive antihydrogen ion, created by two reactions in a positronium cloud

Doppler sympathetic cooling (Paul trap)

Be⁺ (+ D⁺) crystal

Raman sideband cooling (precision trap)

Be $^+$ - H^+

Photodetachment + free fall

Positron pulse ~keV

Ps (~50 meV) + pbar (~keV) reaction

Antiproton trap (in development)

Antiproton pulse

keV

eV

meV

Doppler sympathetic cooling (Paul trap)

Raman sideband cooling

(100 keV antiproton)

Photodetachment + free fall

Buffer gas trap at the CERN GBAR line

- Buffer gas trap (BGT) or « Surko trap » to capture and trap moderated e⁺
- Nitrogen (1st stage) + CO₂ (2nd stage)

Similar

effect!

Can we replace the first stage with a remoderator?

- First stage of a BGT: significant energy loss in one collision with N₂
- Effect of a remoderator: significant energy loss
- Advantages:
 may work better with the broad energy distribution of the linac source
 avoid second gas line

The new trapping sequence

Changes in the trapping scheme

Short positron pulse

50 V DC on the moderator

- Linac-based source:
 2.85 μs long pulses with max. 300 Hz
 (3.3 ms repetition time)
- Long beamline (>8 m)
- Buncher pulse on the moderator to compress positron pulse

Efficiency of SiC remoderation

- Very robust moderator, works in poor vacuum
- Contradictory numbers in the literature
 30 % or > 60 % moderation efficiency?
- No study with very low positron energy
- Our previous studies have given > 60 %
- This study confirms this number at low positron energy
- Low energy: significant epithermal emission may be usable for trapping

Fig. 3. Re-emitted positron ratio R as a function of positron energy for tungsten, 3C-SiC, n-type 6H-SiC, p-type 6H-SiC, SrTiO₃, and Si:H.

Suzuki et al, Jpn. J. Appl. Phys. 37,4636(1998)

SIC: epithermal emission?

- Positron work function: -2.1 V
- Rather broad energy distribution
- Remoderator must work at <~50-200 eV energy
- Low energy: significant epithermal emission
- No studies at low energy
- Epithermal fraction can be still usable for trapping

FIG. 5. (a) Energy distributions of reemitted positrons from SiC sample at 1 and 5 keV incident energies. The distributions were obtained by numerically differentiating integral distributions obtained using the retarding grid analyzer and normalized so as to coincide at $V_{\text{RET}} = 0.5 \, \text{V}$. (b) Estimate of the energy distribution of epithermals obtained by subtraction of the 5 keV incident energy differentiated spectrum from the 1 keV spectrum.

(Nangia et al, J.Appl.Phys 91,2818(2002)

Cooling between linac pulses

- After 3.3 ms the earliest the SiC should be ready for the next pulse
- If not cooled into the potential well, positrons may annihilate on the SiC (loss)
- The gas (CO₂) must cool fast enough (ms range)
- literature: SF₆, CF₄, CO₂ or CO at 10⁻⁵-10⁻⁴ mbar pressure may have ms cooling time
- Cooling between the linac pulses is feasible

TABLE III Positron cooling in a PM trap using molecular gases at 2.6×10^{-8} mbar: time τ , for direct annihilation; measured cooling time, τ_c ; and the energies of the vibrational quanta, ϵ_i . Data from Refs.(Greaves and Surko, 2000, 2001).

Gas	$ au_a(s)$	$\tau_c(s)$	$E_{\nu}(eV)$
SF_6	2200	0.36	0.076, 0.19
CF_4	3500	1.2	0.16
CO_2	3500	1.3	0.29, 0.083
CO	2400	2.1	0.27
N_2	6300	115	0.29

Table from Danielson et al, Rev. Mod. Phys. 87,247 (2015)

Experiment using the second stage of the BGT

- SiC moderator on a moveable sample holder behind the second stage
 + new electrode before the SiC
- The first stage is used to form a potential barrier
- The positrons are cooled into a potential well by CO₂ (or SF₆)buffer gas
- Rotating wall compression to reduce diameter
- Tests performed at 200 Hz (5 ms between pulses)
- Measurement:

annihilation signal from trapped positrons ejected on the SiC kept at -100V reference: signal from direct annihilation of the original pulse (SiC at -100V) detector: CsI scintillator

Verification of the moderator efficiency of SiC

- High quality epitaxial SiC
 4H polytype, n type (N) <5x10¹⁵ cm⁻³ doping
- Reemitted fraction is measured with linac pulses
- Not a detailed study
- Confirms our earlier results (~60 % efficiency)

Trapping efficiency

- Accumulation for 100 ms (21 pulses)
- Optimization
 - Buncher pulse
 - Gas pressure
 - Potential well
 - Moderator potential
 - Rotating wall frequency and amplitude
- Best result: ~40 % trapping efficiency*

^{*(}defined a trapped positrons as a function of the positrons which reach the SiC remoderator)

Gas cooling

- 5 ms repetition time (200 Hz linac frequency)
- Annihilation in the gas is small in the time scale used (~0.1 s)
- Signal saturates above ~5x10⁻⁵ mbar
 - → cooling is fast enough to confine positrons into the potential well in 5 ms
- No difference between CO₂ and SF₆

TABLE III Positron cooling in a PM trap using molecular gases at 2.6×10^{-8} mbar: time τ , for direct annihilation; measured cooling time, τ_c ; and the energies of the vibrational quanta, ϵ_i . Data from Refs.(Greaves and Surko, 2000, 2001).

Gas	$ au_a(s)$	$ au_c(s)$	$E_{ u}(eV)$
SF_6	2200	(0.36)	0.076, 0.19
CF_4	3500	1.2	0.16
CO_2	3500	$\left(\begin{array}{c}1.3\end{array}\right)$	0.29, 0.083
CO	2400	2.1	0.27
N_2	6300	115	0.29

Table from Danielson et al, Rev. Mod. Phys. 87,247 (2015)

Accumulation of positrons in the potential well

No significant loss up to ~200 ms, at 300 ms still tolerable

(measurement at 200 Hz linac frequency)

Rotating wall compression

- Rotating wall is on all the time
- Compresses the positron cloud to avoid loss to reduce size before transfer to 3rd stage
- Essential for high trapping efficiency
- Result: small diameter, good compression

Image of the ejected pulse (MCP)

Transport from the trap

- The SiC remoderator is in the way when the positrons are ejected from the trap
- Several methods are in study to solve the problem:
 - Removal of the moderator (if possible, in 3.3 ms)
 certainly feasible, the speed is a problem
 - Manipulation of the plasma position to pass on the side of the SiC feasible but requires changes in the vacuum system
- At the moment, a mechanical movement is being developed (magnetically coupled rotary drive)

Summary and outlook

- Possible alternative to trap positrons from a linac-based source
- The SiC based scheme works, with an efficiency of ~40 % for 100 ms
 accumulation time
 - About three times higher as the actual efficiency with the conventional BGT
 - Higher than the efficiency reported for ²²Na based systems
- Only small loss up to 300 ms accumulation time
- 3rd stage is needed for longer accumulation
- The present configuration is not optimized for the SiC scheme
 - The remoderator is in a divergent magnetic field (vacuum cross)
 - The bunching pulse is not yet perfectly optimized
 - The trap could be longer to accommodate better the pulse
- With an optimized setup, better efficiency may be possible, up to ~60 %

The GBAR collaboration

IONAL CENTRE for RESEARCH

東京大学 大学院総合文化研究科・教養学部

The University of Tokyo, Komaba

Graduate School of Arts and Sciences, College of Arts and Sciences

UNIVERSITET