

The human body, as seen from an ultra-high vacuum specialist perspective

Howl's Moving Castle Hayao Miyazaki - 2004

Vacuum requirements

Vacuum compatibility

Transport (10⁻⁴ mbar)

Surface studies (10⁻⁵ - 10⁻⁹ mbar)

Polymer studies Solid Ne remoderation (10⁻⁷ mbar)

Long term storage (10⁻⁹ - 10⁻¹¹ mbar)

Surface scattering experiments (10⁻¹¹ mbar)

Gaseous remoderation

(10⁻³ - 10⁻⁵ mbar)

Organic targets (10⁻⁴ mbar)

Load-locked access ports (10⁻⁷ mbar)

Vacuum compatible components (10⁻⁷ - 10⁻¹¹ mbar)

HIGH

LOW

Vacuum requirements

LOW

Vacuum compatibility

Transport (10⁻⁴ mbar)

Surface studies (10⁻⁵ - 10⁻⁹ mbar)

Polymer studies Solid Ne remoderation (10⁻⁷ mbar)

Long term storage (10⁻⁹ - 10⁻¹¹ mbar)

Surface scattering experiments (10⁻¹¹ mbar)

Gaseous remoderation (10⁻³ - 10⁻⁵ mbar)

Organic targets (10⁻⁴ mbar)

Load-locked access ports (10⁻⁷ mbar)

Vacuum compatible components (10⁻⁷ - 10⁻¹¹ mbar)

HIGH What about electronics?

Technische Universität München

BRINGING ELECTRONICS INTO VACUUM: SMARTER TARGETS FOR POSITRON PHYSICS

Francesco Guatieri
NEPOMUC

WHY?

Avoid / Limit passthroughs

(e.g. when working with high voltages)

Local preamplification

(extremely low input signals)

Active Sample Holder

Bachelor thesis of Kilian Brenner

Galvanically-insulated microcomputer that operates directly in vacuum

Designed to perform active manipulation of samples

- Application/readout of voltages and currents
- Temperature measurements
- Strain measurements
- Operation of microactuators
- Completely operated through light

OPERATION THROUGH LIGHT

WHAT MAKES IT VACUUM COMPATIBLE? Mainly choice of components.

Aluminum body
Removable PET label
Liquid filled
Rubber plug on the bottom

Hundreds of times smaller Completely solid state Full ceramic body High temperature rated

WHAT MAKES IT VACUUM COMPATIBLE? Mainly choice of components.

Large body Covered in enamel Tin-coated terminals Hundreds times smaller Ceramic and enamel body High temperature rated

Also, complete removal of flux residuals.

WHAT MAKES IT NOT VACUUM COMPATIBLE?

Solder resist layer

Solder

Solder

Plastic body of ICs

Despite that, in our apparatus

~10⁻⁶ mbar initial pressure 1.8 10⁻⁷ mbar after conditioning

Development and commissioning is completed. The first experiments are ongoing.

TYPICAL FARADAY CUP DESIGN

Long connection with a passthrough Acts like an antenna to pick up noise Noise level limits measurement speed

A DIFFERENT DESIGN

Preamplifier installed in vacuum

All connections to the outside are amplified

PRELIMINARY PERFORMANCE ASSESSMENT

(From the bachelor thesis of Michael Zimmermann)

Measurement time <1s

CURRENT DESIGN AIM

Four adjacent Farady Cup detectors
Sensitive to position and intensity of the beam
We aim at sub-second picoampere precision
Suitable to perform live beam optimization

IMPROVING ON THE VACUUM COMPATIBILITY

Solar cell

Plastic body of ICs

Still a problem?

A POTENTIAL SOLUTION TO REMOVE IC CASING

Direct to PCB wire bonding

Requires specialized external manufacturing so we would like to test whether it is necessary

WE WON'T STOP HERE

There are several direction in which we can expand our approach

Union of the two technologies (i.e. Faraday Cups on active sample holders)

More complex manipulation

Custom integrated electronics

Multipixel detectors

What electronics would you like install in your experiment's vacuum if you could?

What electronics would you like install in your experiment's vacuum if you could?

What electronics would you like install in your experiment's vacuum if you could?

Thanks for your attention