Pulsed positron beamline at BARC, Indiapreliminary results

Saurabh Mukherjee

LAYOUT of the presentation

- 1. Overall setup of pulsed beam at BARC
- 2. RF section
- 3. Recent results- Silicon and NBR (Nitrile Butadiene Rubber)

PULSING OF SLOW POSITRONS FOR VARIABLE-ENERGY POSITRON LIFETIME SPECTROSCOPY

R. Suzuki, Y. Kobayashi*, T. Mikado, H. Ohgaki, M. Chiwaki, T. Yamazaki and T. Tomimasu**

Electrotechnical Laboratory, 1-1-4 Umezono, Tsukuba, Ibaraki 305, Japan *National Chemical Laboratory for Industry, 1-1 Higashi, Tsukuba, Ibaraki 305, Japan

Solid State Phenomena Vols 28-29 (1992) pp 365-0

SOURCE and MODERATOR

Chopper, prebuncher and Buncher

PPC12.5 Saurabh Mukherjee mukherjees@barc.gov.in

<u>Chopper – circuit for sine wave pulsing</u>

Masaki Maekawa, NIMB, Volume 270, 1 January 2012, Pages 23-27 ; S. Shrotriya , J. Instrumentation, 2021

PPC12.5 Saurabh Mukherjee mukherjees@barc.gov.in

CHOPPER SPECTRUM

PPC12.5 Saurabh Mukherjee mukherjees@barc.gov.in

HI T SI S

Prebuncher

Prebuncher Spectrum

BUNCHER ASSEMBLY INSIDE THE VACUUM CHAMBER

Figure 1.16 Coaxial resonator.

accomplished in practice with a coaxial line that has a gap at one end between the center conductor and the conducting end wall. An electric field suitable for acceleration may exist between the inner conductor and either the end wall or the cylindrical wall. Thus, beam holes can be introduced near the gap, allowing either a radial or an axial trajectory. Resonant modes correspond approximately to the length λ equal to an odd multiple of a quarter wavelength, the lowest mode being a quarter-wave resonator. Design formulas for the quarter-wave

* RF Linear Accelerators, Thomas P. Wangler

DESIGN CONSIDERATIONS-

- Resonant frequency of 150 MHz is used.
 High frequency is required to produce narrow pulses.
- \circ since λ is = c/f, too small a frequency will result in big structure which are difficult to fabricate. Conventionally, for positrons and ion beams 100-200 MHz is chosen.

CST simulation of the buncher cavity

CST simulation - Design of the coupling loop- S parameters

PPC12.5 Saurabh Mukherjee mukherjees@barc.gov.in

* Shankar Lal, RRCAT, Indore

Characterization of Buncher Cavity-1

* S.Shrotiya, Journal of Instrumentation, 2021

Characterization of Buncher Cavity-2-S11

SIMULATION OF ELECTRIC FIELD IN A 150 MHz CAVITY- field at the GAP

BLOCK DIAGRAM FOR THE RF CIRCUIT

THANK YOU

ACKNOWLEDGEMENT-

Sandeep Shrotriya and Manjiri Pande – RF setup

✤ K.G. Bhushan – Electron Gun, Design Inputs

BLANK

