

Determining the asolute fraction of emitted positronium by GEANT4 supported analysis of gamma ray spectra

Benjamin Rienäcker

FRM II

Heinz Maier-Leibnitz

PPC 12.5 - August 30th, 2021

Ps level scheme up to n=3

Range of physics with Ps

Ps is a great experimental test ground for QED

- precision tests via Ps laser excitation
- Ps laser cooling
- quenching and photoionization

Ps is also interesting for

- gravitational measurements
- Bose-Einstein condensates (gamma ray lasers?)
- catalyst for antimatter (charge exchange)
- material science, porosimetry

Hot experimental topics

Routes of Ps emission

Incident e+: u Nonthermal Ps: f Thermal Ps: <

up to keV few eV <100 meV

Image after Schultz and Lynn (1988)

Ps detection with HPGe

High purity Ge detector with high energy resolution

Define the valley-to-peak ratio R

$$R = \frac{V}{P}$$

Compare this to a 0% and a 100% Ps measurement and scale R in between:

$$f_{Ps} = \left\{ 1 + \frac{P_1}{P_0} \frac{[R_1 - R]}{[R - R_0]} \right\}^{-1}$$

R₁ from Ge at 1100K with e⁺ at ≈0eV R₀ from Ge at RT with e⁺ at 30keV P₁/P₀ (Peak 100% / Peak 0% ≈ 0.4)

Ps fraction f_{Ps}(E) from common method

Positron diffusion model for Ge(100):

J. Dryzek and P. Horodek, Nucl. Instr. Meth. B, 266 (2008)

L₁: positron diffusion length

 J_0 : Fraction of thermal positrons escaping through the surface

 f_0 : Fraction of J_0 forming Ps

$$f_{Ps} = f_0 J_0 \int_0^\infty P(z) e^{-\frac{z}{L_+}} dz$$

Ps detection

High purity Ge detectors with high energy resolution (as for CDBS)

$$f_{PS} = \left\{ 1 + \frac{P_1}{P_0} \frac{[R_1 - R]}{[R - R_0]} \right\}^{-1}$$

Uncertainties:

- R₁ really 100% Ps? (surface contamination, reemission)
- different 2y and 3y detection efficiencies
- background due to Compton scattering, pile-up, photon absorption: all subsumed in R₀ (lower limit)
- possible fluctuations in the count rate (P_1/P_0)
- Ps velocity: a fraction of Ps hits an obstacle -> 2x

New method

GEANT4 simulation of one HPGe detector

Phys. Rev. A 102, 062212 (2020)

New method

 $C_{meas}(E) = N_{2\gamma}C_{2\gamma} + N_{3\gamma}C_{3\gamma} + C_{BG}$

Uncertainties:

- R₁ really 100% Ps? (surface contamination, reemission)
- different 2x and 3x detection efficiencies
- background due to Compton scattering, pile-up, photon absorption: subsumed in C_{BG}
- possible fluctuations in the count rate (P₁/P₀)
- Ps velocity: a fraction of Ps hits an obstacle -> 2x

$$f_{Ps} = \frac{amount \ of \ Ps}{total \ number \ of \ e^+} = \frac{\frac{4}{3}N_{3\gamma}}{N_{3\gamma} + \frac{3}{2}N_{2\gamma}}$$

New method

"100% Ps reference"

"0% Ps reference"

Pile-ups (qualitative check)

Influence of the Ps velocity

Dealing with the Ps velocity: Monte Carlo

10.000 o-Ps atoms in real detector geometry

95% of thermal Ps and **46%** of non-thermal Ps annihilate <u>in flight</u>, the rest touches a wall

- Many interesting experiments use Ps
- HPGe detectors are commonly used to detect Ps annihilation radiation
- Absolute fraction of emitted Ps strongly depends on systematic uncertainties and calibration
- new, direct method based on simulation has only few systematic error sources left (that can be tackled)
- The Ge(100) calibration target at 1100 K as used here had an efficiency for Ps production of less than 0.80(5) at 0 keV positron implantation energy

Questions?

Thank you!