Development of a High-Resolution Probing Laser Suited for Cold Positronium Spectroscopy

<u>R. Uozumi¹</u>, Y. Tajima¹, T. Kobayashi¹, K. Shu¹, E. Chae^{1,7}, K. Yoshioka¹,
A. Ishida², T. Namba², S. Asai², M. Kuwata-Gonokami²,
N. Oshima³, B.E. O'Rourke³, K. Michishio³, K. Ito³, K. Kumagai³,
R. Suzuki³, S. Fujino⁴, T. Hyodo⁵, I. Mochizuki⁵, K. Wada⁵ and T. Kai⁶

12.5th International Workshop on Positron and Positronium Chemistry (PPC 12.5) 31 August 2021

Significance of Cold Ps

Realization of the first Bose-Einstein Condensation by an antimatter containing atom

Precision spectroscopy of transition frequencies

M. S. Fee *et.al*, Physical Review A **48**, 192 (1993). K. Danzmann, M. S. Fee, and S. Chu, Physical Review A **39**, 6072 (1989) A. Czarnecki, K. Melnikov, and A. Yelkhovsky, Physical Review A **59**, 4316 (1999).

<u>Realizing cold Ps around 10 K is of great importance</u>

Temperature Measurement Methods of Cold Ps needs to be Established

Typical Temperature measurement methods

Time-of-flight (TOF)
 Ps mean velocity:

 1.4×10⁴ m/s @10 K
 2.0×10⁴ m/s @20 K

Spatial difference of <u>5 mm</u> after flight of <u>800 ns</u>

o-Ps decay time: 142 ns

- Doppler broadening spectroscopy (DBS)
- Angular Correlation of Annihilation Radiation (ACAR)
- Doppler Laser Spectroscopy

Doppler laser spectroscopy could be a suited method for cold Ps temperature measurement

Doppler Laser Spectroscopy of Ps

Resolution (given by Laser Linewidth) will be Tunable

Resolution is determined by the <u>linewidth</u> of the probing laser (=how monochromatic the laser is)

With the laser technology of today, linewidth could be adjusted to a desired

Laser spectroscopy by a laser with an optimized linewidth could suit temperature measurement of cold Ps

How Narrow should the Linewidth be?

^{*1} laser intensity: 500 uJ /(1 cm² \times 2 ns) @243 nm

Choosing an Appropriate Longitudinal Mode Interval

Longitudinal mode intervals should be narrow enough to be comparable to the natural width of Ps (50 MHz)

Requirements for the Cold Ps Probing Laser

- 1. Optimized linewidth: around 10 GHz
- 2. Appropriate longitudinal mode interval: <u>near 50 MHz</u>
- 3. Wavelength: Ultraviolet (243 nm)
- 4. Adequate pulse intensity
- 5. Frequency stability

Energy level diagram of Ps

<u>These requirements can not be achieved</u> <u>by commercially available lasers</u>

The Newly Developed High-Resolution Probing Laser

The Newly Developed High-Resolution Probing Laser

The Newly Developed High-Resolution Probing Laser

Linewidth

Longitudinal Mode Interval

Requirements for the Cold Ps Probing Laser

- 2. Appropriate longitudinal mode intervals: <u>near 50 MHz</u>
- 3. Wavelength: Ultraviolet (243 nm)
- 4. Adequate pulse intensity
- 5. Frequency stability

Small fluctuation to endure long measurements Excite enough Ps to 2P state

Energy level diagram of Ps

Numerical Simulation of Laser Induced Excitation

Frequency Stability

Frequency measurement using a wavemeter @729 nm

20 min frequency stability of 1 GHz @729 nm (<u>3 GHz</u>@243 nm)

Sufficient frequency stability to endure long measurements

Conclusion and Future Prospects

Conclusion

- Developed a new high-resolution probing laser.
- Achieved an <u>optimized linewidth of 10 GHz</u> which could probe Ps at <u>10 K or below</u>.
- Narrow <u>longitudinal mode interval of 100 MHz</u> was achieved to efficiently excite Ps.
- The new laser has <u>adequate pulse intensity</u> to pump enough Ps to excitation state.

Future prospects

- Preparing for spectroscopy measurements using the new laser.
- Application of utilizing the new laser to observe proof of laser cooling.