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Topmost spin phenomena

v Novel quantum spin phenomena on the topmost surface are
important for realizing next-generation devices.

v To understand these phenomena, the spin polarization of the
topmost layer must be evaluated correctly.
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Surface spin evaluation

vV There are several methods to evaluate surface spins.

vV It is very difficult to evaluate only such the spins.
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Commonly used techniques:

S-ARPES

Spin- and Angle-Resolved
Photoemission Spectroscopy

DP-XMCD
Depth-profiling X-ray Magnetic
Circular Dichroism

(a) Bi;Se;

PRI
T o IRRE

(b) MnBi,Se; / Hi;Se;

L - .
Iow W 02 0 02 02 0 02
LA A A -

TMAROEH (B
These results include information not only

electron -~ - .- -
density from the surface electrons but also from
I \the several bulk layer.

high Novel quantum spin phenomena occurs here

- - = e -
’_ -\

Y\



Positronium spectroscopy
can provide such information

Advantages of positronium spectroscopy:

/

1. Ps is formed only at the vacuum side of the surface.

2. Ps annihilation changes depending on
the direction of electron spin. (p-Ps and o-Ps)

3. Ps emission affected by the state of electrons.
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1. Ps formation only at surface
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. Ps state changes by electron spin
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3. Ps emission affected
by electron state

Ps emission energy and
angles are affected by
electron state
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Energy-resolved Ps spectroscopy

v Energy of emitted Ps can be determined by Ps time-of-flight(TOF) .

v The spin-polarized electron density of states associated only
with the topmost layer of metals will be obtained.
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PsTOF apparatus

Timing signal

beam pulsing (high efficiency), | secondary electron
spin depolarization spin pol.

Large-scale
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Spin-polarized Ps-TOF (SP-PsTOF)

Construction a Ps-TOF apparatus using spin-polarized positron beam.

Phys. Rev. Lett.126(2021)186401
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TOF detector

/ vV Keeping counting rate is the highest priority.
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Sample magnetization

v Sample magnetization by external magnetic field of 0.05T.

vV The spectrum asymmetricity was obtained from
the spin parallel / antiparallel TOF spectra.
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SP-PSTOF result (Pt film: non-magnetic)

vV The differential Ps-TOF spectrum was measured
for the non-magnetic Pt thin film.
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v Difference PsTOF by alternating magnetization.
TOF — Ps energy (adjusted to Ef=0)
Intensity asymmetricity — electron spin polarization

v Spin polarization ~0% (non-magnetic)
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SP-PSTOF result (W bulk: non-magnetic)

vV The differential Ps-TOF spectrum was measured
for the non-magnetic W bulk crystal.

v Spin polarization ~0% (non-magnetic)
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SP-PsTOF result (Ni film: magnetic)

v Clear megative polarization is appeared

near the Fermi level. g
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SP-PsTOF result (Ni film: magnetic)

v Comparison with first-principles calculation.

v Experimental and calculation show basically the same
tendency, but they seem not to be exactly the same.
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Convolution of energy resolution

v Computational DOS had to be convolved at the resolution
of the experimental setup.
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SP-PsTOF result (Ni film: magnetic)

v For the Ni thin film, a negative polarization
was detected near the Fermi surface.

v well reproduced with experimental resuit
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SP-PsTOF result (Co film: magnetic)

v As another example of a ferromagnetic material,
Co film was also measured.

v Like Ni sample, a negative polarization was observed.
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SP-PsTOF for Half metal

| v Half metal has a 100% polarization near the Fermi level in bulk,
but not on the surface. The reason is still unclear.

vV The SP-PsTOF measurement is suitable for evaluating the
surface spin polarization of half metal.
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SP-PsTOF result (Co,MnSi film)

v Energy-resolved spin polarization of Co,MnSi (CMS)
Heusler alloy film was obtained.

v Spin polarization near the Fermi level is very weak.
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SP-PsTOF result (Co,FeGa0.5Ge0.5 film)

v Energy-resolved spin polarization of Co,FeGa, ;Ge, ; (CFGG)
Heusler alloy film was obtained.

v Spin polarization of surface electrons is very smalll.
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Improvement of SP-PsTOF apparatus

vV For better measurements, improving the energy
resolution is unavoidable.
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Improvement of PsTOF spectrum

v We try to find the best balance between counting rate
and energy resolution.
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Summary

v Spin-polarized Ps TOF apparatus has been
constructed.

vV We succeeded in obtaining the first SP-PsTOF.
lear asymmetry for ferromagnetic sample
near E=®Ps.

In the Future, we have plan to measure the
pintronics materials.

Thank you for your attention!
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The energy spectrum of positronium atoms generated at a solid surface reflects the electron density of
states (DOS) associated solely with the first surface layer. Using spin-polarized positrons, the spin-
dependent surface DOS can be studied. For this purpose, we have developed a spin-polarized positronium
time-of-flight spectroscopy apparatus based on a **Na positron source and an electrostatic beam
transportation system, which enables the sampling of topmost surface electrons around the T™ point
and near the Fermi level. We applied this technique to nonmagnetic Pu(111) and W{001). ferromagnetic Ni
(111), Co(001) and graphene on them, Co,FeGag sGeys (CFGG) and Co,MnSi (CMS). The results
showed that the electrons of Ni(111) and Co((001 ) surfaces have characteristic negative spin polarizations,
while these spin polarizations vanished upon graphene deposition, suggesting that the spin polarizations of
graphene on Ni(111) and Co((NK1) were mainly induced at the Dirac points that were out of range in the
present measurement. The CFGG and CMS surfaces also exhibited only weak spin polarizations
suggesting that the half-metallicity expected for these bulk states was not maintained at the surfaces.

DOL: 10.1103/PhysRevLen. 126. 186401

Slow positrons injected into the subsurface region of a  elucidate the nature of the spin polarization of the top-
metal diffuse back to the surface/vacuum interface and are  surface electronic states and play a valuable role in the field
emitted as positronium (Ps) atoms by picking up the  of spintronics.
outermost surface electrons when the Ps formation poten- Spin-polarized Ps spectroscopy was first demonstrated

PHYSICAL REVIEW LETTERS 126, 186401 (2021)







Field asymmetry of o-Ps intensity
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