Radiation processed conducting polymer nanocomposites for artificial skin applications

Priya Maheshwari

Bhabha Atomic Research Centre, Mumbai, INDIA

priyam@barc.gov.in

PPC 12.5, Poland

August 31- September 03, 2021

Layout

- Introduction
 - (materials for artificial skin, properties, components..)
- Conducting polymer nanocomposites for piezoresistive sensors
- Radiation processing of polymers for engineering the microstructure
- Our study on radiation processed PDMS and carbon filler based nanocomposites
- Summary

Artificial Skin

Integrating functions of skin into electronic devices

New generation of materials with skin-like properties

Robotic Arm

Artificial Nose

Skin: tactile sensor

Courtesy: wikipedia

Artificial /e-skin: Sensing the Senses

Ultrahigh responsive sensors

Stretchability	Introduction of strain dissipation mechanism into the material design itself
	Molecular engineering: soft and dynamic segments & bonds, interface compressibility
Self-healability	Dynamic intermolecular interaction (most effective approach) Combination of bonds (eg. weak and strong Hydrogen bonds)
Biocompatibility	Incorporation of biodegradable moieties along the polymer backbone

Conducting polymer composites

Conducting/Semi-conducting Elastomers + Nanofillers

Elastomeric matrix (intrinsic stretchability)

Inclusion of nanofiller to matrix: Electrical response

Volume Fraction

Synergy between matrix and filler : controls the functionality

Challenge

Controlling the functionality (conduction) under external stimuli :

Constructing special phase morphology of the composite

- Interface
- Interphase
- Matrix morphology
- Chain entanglements (interaction with fillers)
- Percolated network of nanofillers

Radiation Processing

As per the application demand !

Advantage over other methods

- No need for any solvent or molecular moieties to engineer the microstructure of the base polymer matrix
- Easier and efficient way to modify the structure in an optimized manner
- Room Temperature
- High throughput

Engineering the microstructure of Polymer nanocomposite

Functional Matrix

- Elastomer/conducting polymer
- Radiation processing to improve functional characteristics

Electrical conduction

Nanofillers: CNT, nanocarbon, carbon black, Ag nanowires etc.

PDMS (Poly dimethysiloxane) and CNT/Nano carbon black (CCB)

Mechanical property

Pristine PDMS

- Crosslinking improved the mechanical response of PDMS and Nanocomposites
- Modified microstructure: Synergetic effect of crosslinking and nanofiller loading

Optimization: Interplay of sensitivity vs range

Nanocomposites

Piezoresistive response

Radiation processing (crosslinking) improves the response characteristics

CNT and CCB : difference in optimum radiation dose to get the best response

Higher dose needed for CCB case (responsive @ 75 kGy)

Under tensile force, CCB behaviour is different than CNT

Small strains: CCB networkbreaksLarger strain: role ofmicrostructure of the matrix

Compressive (Normal) Force

Radiation Technology based high-stress sensing piezoresistors

Understanding microstructural characteristics responsible for piezoresistive response

Pristine PDMS

- Decrease in free volume size with crosslinking
- Crosslinking: Increase in size distribution of free volumes

PDMS and CNT (10wt%)

PDMS and CCB (20wt%)

Increase in τ₃ with increase in crosslinking is counterintuitive!!

PDMS and CNT nanocomposite

Piezo resistive and mechanical response of the composite do not reveal reduction of free volumes at the interphase

- Radiation crosslinking in both the regions (Reduction in free volume size)
- Interphase has smaller size free volumes: compact arrangement of molecules near the filler

PDMS and CCB nanocomposite

Behaviour similar to CNT above a threshold dose ~ 75kGy Consistent with piezoresistive response

Difference in the interaction of CCB and CNT with Polymer matrix ?

Microstructure at lower doses in CCB?

Nanocomposites with varying loading of nanofillers

- Microstructure alteration
- Enhanced conductivity

Microstructure of CNT and CCB based composite is different

35

CNT @ 50 kGy

No appreciable change in free volume characteristics of interphase and bulk polymer region

CCB @ 50 kGy

Relative fraction/concentration of free volumes at interphase

Fraction of interphase region relative to total free volume increases with increase in the nanofiller loading but behaviour is different in CNT and CCB

 I_3 and I_4 profiles certainly an indicative of microstructural characteristics

Summary

- Microstructure of the base polymer matrix is one of the crucial factors for the response of sensors
- Microstructure engineering using radiation and nanofiller ingression is a route to optimize the response
- Positron probing of free volume is a sensitive way to decipher microstructural alterations in nanocomposites
- The influence of varying electron density (conducting nanofiller) on positron annihilation parameters (Ps formation probability etc...) needs to be systematically investigated in order to elucidate microstructure characteristics and its correlation with the response.

Acknowledgement

- Dr. P. K. Pujari
- Dr. Abhinav Dubey and Dr. R. K. Mondol
- Colleagues from Nuclear Probe section

