### Investigation of open volume in photochromic YH<sub>x</sub>O<sub>y</sub> thin films by positron annihilation lifetime spectroscopy

<u>Ziying Wu</u><sup>1,\*</sup>, Tom de Krom<sup>1</sup>, Gijs van Hattem<sup>1</sup>, Giorgio Colombi<sup>2</sup>, Bernard Dam<sup>2</sup>, Henk Schut<sup>1</sup>, Marcel Dickmann<sup>3</sup>, Werner Egger<sup>3</sup>, Christoph Hugenschmidt<sup>4</sup>, and Stephan W.H. Eijt<sup>1</sup>

<sup>1</sup>Department of Radiation Science and Technology, Faculty of Applied Sciences, Delft University of Technology, Delft, The Netherlands <sup>2</sup>Materials for Energy Conversion and Storage, Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Delft, The Netherlands <sup>3</sup>Institut für angewandte Physik und Messtechnik, Bundeswehr Universität München, Germany <sup>4</sup>Physics Department and Heinz Maier-Leibnitz Zentrum (MLZ), TU München, Germany





12.5<sup>th</sup> International Workshop on Positron and Positronium Chemistry

# contents

- Introduction: photochromic  $YH_xO_v$  thin films
- Vacancies and nanopores in  $YH_xO_y$  and Y,  $YH_{\sim 2},$   $Y_2O_3$  studied by PALS
- Nanostructural changes in YH<sub>x</sub>O<sub>y</sub> thin films upon illumination studied by *in-situ* DB-PAS
- Conclusions



## Photochromic $YH_xO_y$ thin films



Picture: **T. Mongstad** *et al*. "A new thin film photochromic material: Oxygen-containing yttrium hydride", *Sol. Energy Mat. Solar Cells* (2011)





Picture: **S.W.H. Eijt** *et al*. "Photochromic YOxHy Thin Films Examined by in situ Positron Annihilation Spectroscopy", *ACTA PHYS POL A* (2020)

#### Photo-darkening: Reduced sub-bandgap transmission

Bleaching: nearly full recovery

### Smart windows for energy-saving



Picture: Proc. SPIE 10555, Emerging Liquid Crystal Technologies XIII, 1055516 (2018)



# **ŤU**Delft

# Synthesis of $YH_xO_y$ thin films



## Phase diagram of YH<sub>x</sub>O<sub>y</sub> thin films

Pictures: Cornelius et al., J. Phys. Chem. Lett. 10 (2019) 1342–1348





Grey area (MH<sub>3-2x</sub>O<sub>x</sub>): photochromic

#### Why are these films photochromic?

# **ŤU**Delft

#### Mechanism: similar to Ag-based photochromism?





Pictures: F. Nafezarefi, docteral thesis, TU Delft, 2020

Yttrium (dihydride) domains growth?

Photochromic Cu<sup>+</sup> doped AgCl glass: formation of Ag metal clusters



#### Mechanism: Role of Hydrogen?



Picture: **C. Vinod Chadran** *et al.* "Solid-State NMR Studies of the Photochromic Effects of Thin Films of Oxygen-Containing Yttrium Hydride", J. Phys. Chem. C 118 (2014) 22935 - 22942

#### NMR:

- mobile hydrogen 'disappears' upon UV illumination
- reversible!

# **TU**Delft

### Positron annihilation spectroscopy



#### Motivations:

- ➢ What are the sizes and concentrations of vacancies in asdeposited YH<sub>x</sub>O<sub>y</sub> and Y, YH<sub>~2</sub>, Y<sub>2</sub>O<sub>3</sub>? ----- by PALS
- The variation of electronic structure----- by DB-PAS
- Do vacancies and electronic structure change upon illumination? Its relationship with photochromic effect?

----- by in-situ DB-PAS



## PALS @ MLZ Garching





Picture from <a href="https://mlz-garching.de/nepomuc">https://mlz-garching.de/nepomuc</a>

## The open volume in $YH_xO_y$ and Y, $YH_2$ , $Y_2O_3$ by PALS



#### Two-defect trapping model [2]

For extracting the bulk lifetime ( $\tau_b$ ), positron trapping rate ( $k_{di}$ ), and defect concentrations ( $C_i$ ).

Main equations of this two-defect trapping model:

$$k_{d1} = \mu C_1 = I_2 \left(\frac{1}{\tau_1} - \frac{1}{\tau_2}\right)$$
$$k_{d2} = \mu C_2 = I_3 \left(\frac{1}{\tau_1} - \frac{1}{\tau_3}\right)$$
$$\tau_b^{cal.} = \left(\frac{I_1}{\tau_1} + \frac{I_2}{\tau_2} + \frac{I_3}{\tau_3}\right)^{-1}$$

Assuming  $\mu = 10^{15} s^{-1}$ 



[2] H.S.L. Reinhard Krause-Rehberg, Positron Annihilation in Semiconductors - Defect Studies, Springer-Verlag Berlin Heidelberg1999.

## The open volume in $YH_xO_y$ and Y, $YH_2$ , $Y_2O_3$ by PALS



Y thin film:

 $au_b$ : ~235 ps, not far away from  $au_b^{exp.}$  (249 ps) and  $au_b^{cal.}$  (215 ps) <sup>[3]</sup>  $au_2$ : 279 ps, increases ~19% compare to  $au_b$ ,  $V_Y$  mono-vacancy;  $I_2$ : 92%, concentration ~1.0×10<sup>-5</sup>.

 Delft
 Ref [3] Robles et al., J. Phys.: Condens. Matter 19 (2007) 176222

 Ref [4] Anastasopol et al., Phys. Procedia 35 (2012) 16 - 21

The open volume in  $YH_xO_y$  and Y,  $YH_2$ ,  $Y_2O_3$  by PALS



 $\tau_b$ : ~260 ps, increase ~10% compare to  $\tau_b$  (Y), due to the increase of the volume per unit cell (~6%), XRD.

 $τ_2$ : 294 ps, increases ~14% compare to  $τ_b$ , V<sub>Y</sub> mono-vacancies; I<sub>2</sub>: 91%, concentration ~0.8×10<sup>-5</sup>.

# **ŤU**Delft

## The open volume in $YH_xO_y$ and Y, $YH_2$ , $Y_2O_3$ by PALS



<u>YO<sub>x</sub>H<sub>y</sub> (0.5 Pa):</u>

 $\tau_b$ : ~220 ps

 $τ_2$ : 266 ps, increases ~19% compare to  $τ_b$ ,  $V_Y$  mono-vacancies,  $I_2$ : 71%,  $C_{defect 1} \sim 1.5 \times 10^{-5}$ .  $τ_3$ : 500 ps, vacancy clusters,  $I_3$ : 22%,  $C_{defect 2} \sim 0.5 \times 10^{-5}$ .  $τ_4$ : ~1.6 ns, o-Ps formation: presence of nanovoids

# **TU**Delft

## The open volume in $YH_xO_y$ and Y, $YH_2$ , $Y_2O_3$ by PALS



 $\tau_3$ : 500 ps, vacancy clusters, >V<sub>5</sub> e.g. in GeSn and P doped Ge,  $\tau \sim 450$  ps, V<sub>5</sub> [7,8]

 $\tau_4$ : ~1.6 ns, o-Ps formation: presence of nanovoids, radius ~0.25 nm, according to the Tao-Eldrup (TE) model <sup>[5,6]</sup>; assuming spherical pores, ~7 atoms missing in one unit cell of YH<sub>x</sub>O<sub>y</sub> (~V<sub>7</sub>).

 $V_7$  clusters could be responsible for both  $\tau_3$  and  $\tau_4$ 

**ŤU**Delft

<u>YO<sub>x</sub>H<sub>v</sub> (0.5 Pa):</u>

[5] Eldrup et al., Chem. Phys. 63 (1981) 51-58.[6] Tao, S., J. Chem. Phys. 56 (1972) 5499–5510.

[8] M. Elsayed et al., Acta Mater 100 (2015) 1-10.

17

The open volume in  $YH_xO_v$  and Y,  $YH_2$ ,  $Y_2O_3$  by PALS



Y<sub>2</sub>O<sub>3</sub> thin film (0.3 Pa):

 $\tau_{\rm b}$ : ~237 ps, close to 239 ps for Y<sub>2</sub>O<sub>3</sub> powder <sup>[9]</sup>

- $\tau_2$ : 276 ps, V<sub>Y</sub> mono-vacancy, C<sub>defect 1</sub> ~0.9×10<sup>-5</sup>.
- $\tau_3$ : 539 ps, vacancy clusters,  $C_{defect 2} \sim 0.3 \times 10^{-5}$ .
- $\tau_4$ : ~3 ns, o-Ps formation in nanovoids, radius ~0.37 nm<sup>[5,6]</sup>, ~V<sub>14</sub>

Doppler Broadening Positron Annihilation Spectroscopy @ TU Delft





#### DB-PAS studies of as-deposited $YH_xO_v$ and Y, $YH_{-2}$ , $Y_2O_3$ films



- Y: narrow electronic momentum distribution
- $YH_{\sim 2}$ : more localized valence electronic orbitals due to metal-H bonds
- Y<sub>2</sub>O<sub>3</sub>: insulating, strong localized valence electrons of O atoms

YH<sub>x</sub>O<sub>y</sub>: semiconducting, intermediate electron momentum distribution
 **Y TUDelft**

#### In-situ illumination DB-PAS studies of $YH_xO_y$ films



# **ŤU**Delft

#### In-situ illumination DB-PAS

(after ~2.5 h illumination + ~38 h bleaching)



Anion mobility during illumination

**ŤU**Delft

### In-situ illumination S-W map of AI capped YH<sub>x</sub>O<sub>v</sub> films



Right figure: G. Colombi et al., ACS Photonics 8 (2021) 709-715

# **TU**Delft

### Time-dependence DB-PAS under illumination



GdHxOy: Similar behaviour



### In-situ illumination S-W map of YH<sub>x</sub>O<sub>v</sub> films



## In-situ illumination S-W map of YH<sub>x</sub>O<sub>y</sub> films



Local composition  $YH_2O_x$  (x<0.5),  $Y^{3+}\rightarrow Y^{2+}$ 

metallic-like H-rich domains along with mobility of H



e<sup>+</sup> preferentially trap in H-rich domains (e<sup>+</sup> affinity) **TUDelft** 

## Conclusions

- 1. Mono-vacancies dominant Y and  $YH_{2}$  films at a concentration of ~10<sup>-5</sup> per Y atom, while in addition vacancy clusters and nanopores are found in  $YH_xO_y$  and  $Y_2O_3$ .
- 2. Variation in electronic structure of metal, metal hydride, semiconducting oxyhydride and insulating oxide.
- 3. In-situ illumination DB-PAS on  $YH_xO_y$  films:
  - permanent formation of small vacancy clusters;
  - partially reversible formation of H-rich domains along with the mobility of H.



27

#### Acknowledgement:







Tom de Krom, Gijs van Hattem, Henk Schut, Ekkes Brück and Stephan W.H. Eijt



Giorgio Colombi, Diana Chaykina, and Bernard Dam,



Marcel Dickmann, Werner Egger



**Christoph Hugenschmidt** 



# Thanks for your attention!



### PALS



| Thin films                     | <b>τ</b> <sub>1</sub> (ps) | $\tau_2(ps)$ | $\tau_3(ps)$ | $\tau_4$ (ns)   | I <sub>1</sub> (%) | I <sub>2</sub> (%) | I <sub>3</sub> (%) | I <sub>4</sub> (%) | τ <sub>av</sub> (ps) |
|--------------------------------|----------------------------|--------------|--------------|-----------------|--------------------|--------------------|--------------------|--------------------|----------------------|
| Y                              | 65±3                       | 279±1        | 683±22       | -               | 6±0.2              | 92±0.2             | 1.5±0.2            | -                  | 272±1                |
| $YH_{\sim 2}//Pd$              | 73±5                       | 294±1        | 624±17       | -               | 5±0.2              | 92±0.2             | 3±0.3              | -                  | 293±3                |
| YH <sub>x</sub> O <sub>y</sub> | 47±5                       | 266±4        | 500±20       | $1.63 \pm 0.03$ | 3.8±0.2            | 71±2               | 22±2               | 4.2±0.2            | 365±17               |
| $Y_2O_3$                       | 58±5                       | 276±4        | 539±16       | $3.03 \pm 0.06$ | 5.1±0.3            | 71±2               | 21±2               | 3.4±0.1            | 412±13               |

| Samples               | $\tau_{\rm h}({\rm ps})$ | $k_1 (10^{10} \text{ s}^{-1})$ | $k_2 (10^{10} \text{ s}^{-1})$ | $C_1(10^{-5})$ | $C_2 (10^{-5})$  |
|-----------------------|--------------------------|--------------------------------|--------------------------------|----------------|------------------|
| Y                     | 235±4                    | $1.0\pm0.1$                    | $0.02{\pm}0.001$               | $1.0\pm0.1$    | $0.02{\pm}0.001$ |
| YH <sub>~2</sub> //Pd | 260±6                    | $0.8 \pm 0.1$                  | $0.03 \pm 0.003$               | $0.8 \pm 0.1$  | $0.03 \pm 0.003$ |
| YHxOy-1               | 218±11                   | 1.5±0.3                        | $0.5 \pm 0.1$                  | 1.5±0.3        | $0.5 \pm 0.1$    |
| YHxOy-2               | 224±9                    | $1.2\pm0.2$                    | $0.33 \pm 0.05$                | $1.2 \pm 0.2$  | $0.33 \pm 0.05$  |
| $Y_2O_3$              | 237±9                    | 0.9±0.1                        | $0.27{\pm}0.03$                | 0.9±0.1        | $0.27{\pm}0.03$  |
| 5                     |                          |                                |                                |                |                  |
| UDelft                |                          |                                |                                |                |                  |

30

#### Transmittance before VEP and after VEP





### Time-dependence DB-PAS under illumination



# **ŤU**Delft





# In-situ illumination S-W map of YH<sub>x</sub>O<sub>y</sub> films

✤ W: -12% during illumination with only ~6 vol. % metallic domains



The trapping fraction of Li in MgO is ~92% with Li only occupy 3 vol.% with radius of 3-7 nm [M.A. van Huis et al., 2002 PRB].



## Diffusion-limited trapping model [10,11]:

The fraction of positron annihilate in H-rich domain:

 $f_{clusters} = \frac{\kappa}{\kappa + \lambda_{bulk}} = \frac{4\pi r D_{+} c}{4\pi r D_{+} c + \lambda_{bulk}}$  $L_{+} = \sqrt{D_{+} \tau}$ 

κ is the positron trapping rate in clusters (s<sup>-1</sup>)  $λ_{bulk}$  is the annihilation rate in oxyhydride (s<sup>-1</sup>) r is the radius of the cluster (m) c is the concentration of clusters (m<sup>-3</sup>) D<sub>+</sub> is the diffusion coefficient (m<sup>2</sup> s<sup>-1</sup>) L<sub>+</sub> is the diffusion length (m) r is the positron lifetime (s) On the condition that:

 The difference in e+ affinity is sufficient large (several tenths of eV)

Assumptions:

- The clusters are spherical and homogeneous distribute in bulk.
- De-trapping of e<sup>+</sup> from H-rich domains is neglected.

**UDelft** [10] M.A. van Huis et al., Phys Rev B 65(8) (2002). [11] A. Dupasquier, A. Mills Jr, Positron spectroscopy of solids, IOS press1995.

### Diffusion-limited trapping model



□ ~6 vol. % H-rich domains dominate >70% positron signal
 □ The average size of domains is ~1 to ~10 nm.