Positron annihilation study of high entropy alloys

J. Čížek, O. Melikhova, D. Starý, T. Vlasák, F. Lukáč Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic

High entropy alloys (HEAs)

- Alloys consisting of at least 5 alloying elements with concentrations 5-35 at.%
- Complex concentrated alloys
- Exploring of central regions of multi-element equilibrium phase diagrams

High entropy alloys (HEAs)

- cubic structure (fcc or bcc)
- lattice sites randomly occupied by alloying elements
- favorable mechanical properties in a broad temperature range
- resistance against radiation damage
- high hydrogen storage capacity

Thermodynamics of HEAs

- Alloys consisting of at least 5 alloying elements with concentrations 5 -35 at.%
- Alloys with configurational entropy of mixing $S^{SS} \ge 1.6 R$

Thermodynamics of HEAs

- Alloys consisting of at least 5 alloying elements with concentrations 5 -35 at.%
- $-TS^{SS} < H^{IM} \Rightarrow$ random SS is thermodynamically stable state of HEA

Four "core effects" of HEAs

- random SS might be energetically more favorable than competing IM phases J.W. Yeh, et al. Adv. Eng. Mater. 6 (2004) 299

2. lattice distortions

- several lattice distortion due to different atom sizes
 L.R. Owen, N.G. Jones, Scripta Mater. 187 (2020) 428
- 3. sluggish diffusion ← ???? doubtful
- diffusion in HEAs is slower than in conventional alloys
 J.W. Yeh, et al. Adv. Eng. Mater. 6 (2004) 299
- 4. 'cocktail effect' obvious
- HEA properties may significantly differ from superposition of constituent properties S.Ranganathan, Curr. Sci. 85 (2003) 1404.

D.B. Miracle, O.N. Senkov, Acta Mater. 122 (2017) 448

• various atom sizes of elements \rightarrow lattice distortions

conventional alloy

- constant lattice parameter
- constant crystalline structure

high entropy alloy

- lattice parameter varies
- constant crystalline structure

lattice distortions

amorphous alloy

- lattice parameter varies
- crystalline structure varies

Refractory metal HEAs

- various atom sizes of elements \rightarrow lattice distortions
- measure of lattice distortions misfit parameter $\boldsymbol{\delta}$

Atomic radius

$$\delta = \sqrt{\sum_{i} c_i (1 - r_i/\overline{r})^2}$$

www.webelements.com

Essentials More properties

Radius type	Radius value / pm	Periodicity link
Atomic radius (empirical)	155	
Atomic radius (calculated)	208	
Covalent radius (2008 values)	175	
Molecular single bond covalent radius	152 (coordination number 4)	
Molecular double bond covalent radius	128	
Molecular triple bond covalent radius	122	
Covalent radius (empirical)	150	
van der Waals radius	253	
4		

Atomic radius

• half of distance between elements in their equilibrium configuration

bcc structure

$$r = a \frac{\sqrt{3}}{4}$$

Nb, *r* = 1.44 Å

Ta, *r* = 1.43 Å

V, r = 1.31 Å

fcc structure

$$r = a \frac{\sqrt{2}}{4}$$

hcp structure

Zr, *r* = 1.59 Å

- various atom sizes of elements \rightarrow lattice distortions
- measure of lattice distortions misfit parameter $\boldsymbol{\delta}$
- heat of solution H^{IM} vs. entropy S^{SS}

$$-TS^{SS}$$
 vs. H^{IM}

misfit parameter

concentration atom radius of *i*-th element of *i*-th element

> composition weighted mean atom radius

heat of solution of random SS

heat of solution for atomic pairs of elements *i*, *j* calculated using Miedena's model

A. Takeuchi, A. Inoue, Mater. Trans. 46 (2005) 2817

- various atom sizes of elements \rightarrow lattice distortions
- measure of lattice distortions misfit parameter $\boldsymbol{\delta}$
- heat of solution H^{IM} vs. entropy S^{SS}

• repulsive interaction between (Nb,Ta) and (Zr,Hf)

binary heat of solutions $H_{i,i}$

- various atom sizes of elements \rightarrow lattice distortions
- measure of lattice distortions misfit parameter $\boldsymbol{\delta}$
- heat of solution H^{IM} vs. entropy S^{SS}

Alloys studied

- 17 alloys
- concentrated solutions of refractory metals Hf, Nb, Ta, Ti, V, Zr
- all alloys have bcc structure

Alloy	$S^{SS}(R)$	δ(%)	H ^{SS} (kJ/mol)
NbTaTi	1.10	1.05	1.33
NbTiZr	1.10	5.03	0.89
TaTiZr	1.10	5.01	0.44
NbTaTiZr	1.39	4.83	0.75
NbTiVZr	1.39	7.04	0.25
Nb _{0.5} TaTiZr _{1.5}	1.32	5.22	0.50
Nb _{1.5} TaTiZr _{0.5}	1.32	3.83	1.00
Nb ₂ TaTiZr ₂	1.33	5.27	0.56
Nb ₂ TiVZr ₂	1.33	6.91	0.22
HfNb ₄ TaTiZr ₄	1.39	5.43	0.93
HfNbTaTiZr	1.61	4.98	1.60
HfNbTiVZr	1.61	7.06	0.48
$Hf_{0.5}Nb_{1.5}TiV_{1.5}Zr_{0.5}$	1.50	6.70	1.68
$Hf_{0.75}Nb_{0.75}TiV_{1.25}Zr_{1.25}$	1.58	7.53	0.15
HfNbTiVZr _{0.5}	1.58	6.88	0.59
Hf _{0.5} NbTa _{0.5} TiZr	1.56	5.00	1.31
HfNbTaTiVZr	1.79	6.58	0.78

- various atom sizes of elements \rightarrow lattice distortions
- measure of lattice distortions misfit parameter $\boldsymbol{\delta}$
- heat of solution H^{IM} vs. entropy S^{SS}

Preparation of samples

- casting from 99.99% elements
- UHV arc melting (base pressure 5×10^{-6} mbar)
- Edmund Bühler AM200, max. temperature 3500°C
- water cooled Cu plate mould
- ingot diameter 30 mm

Preparation of samples

- $10 \times 10 \times 1$ mm³ samples for positron annihilation studies were cut from ingots using diamond saw

Preparation of samples

- $10 \times 10 \times 1$ mm³ samples for positron annihilation studies were cut from ingots using diamond saw
- samples were annealed in UHV (10⁻⁶ mbar) at 1200°C for 2 h
- annealing was finished by quenching

Positron lifetime investigations

- digital positron lifetime spectrometer
- photomultipliers Hamamatsu H3378
- BaF₂ scintillators
- time resolution 145 ps (FWHM ²²Na)
- effective coincidence count rate 100 s⁻¹
- >10⁷ positron annihilation events in each spectrum

F. Bečvář et al., Nucl. Instrum. Methods A 539, 372 (2005)

as-cast state

scanning electron microscopy (back-scattered electrons)

as-cast state

as-cast state

as-cast state

EA06_01_BSE_039.tif* 20.0 kV 4.0 10.0 mm 35.76 s BSE 500x KFM

Calphad modelling

Calphad modelling

sample annealed in vacuum at 1200°C/2h

EDS elemental mapping

HfNbTaTiZr alloy – positron lifetime spectroscopy

as-cast state

as-cast sample

positron lifetime spectrum with subtracted source contribution

HfNbTaTiZr alloy – positron lifetime spectroscopy

HPT deformed sample

deformed samples:

cold rolling, high pressure torsion (HPT)

HfNbTaTiZr alloy – positron lifetime spectroscopy

sample annealed in vacuum at 1200°C for 1h

ordered alloy (NbTa)

- e⁺ searches for interstitial regions with enhanced open volume
- e⁺ can be used as a probe of lattice distortions
- one can expect positive correlation between bulk e⁺ lifetime and magnitude of lattice distortions

calculated positron density

HEA (HfNbTaTiZr)

- mean positron lifetime \rightarrow single component fit of positron lifetime spectra
- as-cast alloys

- mean positron lifetime \rightarrow single component fit of positron lifetime spectra
- as-cast alloys \rightarrow significant contribution of positrons trapped at dislocations

- mean positron lifetime \rightarrow single component fit of positron lifetime spectra
- as-cast alloys \rightarrow significant contribution of positrons trapped at dislocations
- alloys annealed in vacuum at 1200°C for 2 h \rightarrow positrons annihilated in the free state

• positron lifetimes of samples annealed in vacuum at 1200°C for 2 h

- positron lifetimes of samples annealed in vacuum at 1200°C for 2 h
- bulk positron lifetime increases with increasing magnitude of lattice distortions

- positron lifetimes of samples annealed in vacuum at 1200°C for 2 h
- bulk positron lifetime increases with increasing magnitude of lattice distortions

- positron lifetimes of samples annealed in vacuum at 1200°C for 2 h
- bulk positron lifetime increases with increasing magnitude of lattice distortions

Hardness of HEAs

- Vickers hardness (HV), load 0.5 kg applied for 10 s
- hardness increases with increasing magnitude of lattice distortions

Hardness of HEAs

- additional precipitation strengthening
- Zr rich precipitates

Conclusions

- The lattice distortion effect was examined in set of complex concentrated alloys of refractory metals Hf, Nb, Ta, Ti, V, Zr
- Positrons actively search for interstitial regions with extended open volume
- Bulk positron lifetime increases with increasing magnitude of lattice distortions
- Positron lifetime spectroscopy enables direct measurement of lattice distortions
- Lattice distortions cause strengthening of alloys
- Positive correlation between hardness and atomic misfit parameter δ was observed

Acknowledgements

- This work was supported by the Czech Science Agency (project 21-16218S)
- Computational resources were supplied by the project "e-Infrastruktura CZ" (e-INFRA LM2018140) provided within the program Projects of Large Research, Development and Innovations Infrastructures