

12.5th International Workshop on Positron and Positronium Chemistry September 2, 2021, Online

Dissolved oxygen sensing by positronium for PET

Kengo Shibuya*, H. Saito Univ. of Tokyo, Japan

F. Nishikido, M. Takahashi, T. Yamaya NIRS-QST, Japan

Positron Emitters in PET

■ Conventional PET isotopes: ¹¹C, ¹³N, ¹⁵O, ¹⁸F

■ Advanced PET isotopes: ⁴⁴Sc, ⁶⁴Cu, ⁷⁶Br, ⁸⁹Zr, ⁹⁰Y, ¹²⁴I, etc. aiming for

- new tracer
- multi-modal imaging (PET/MRI, PET/SPECT, ...)
- radio-theranostics (nuclear imaging + radio-therapy)

Positronium Lifetime Imaging (PALS/PET)

[1] P. Moskal *et al*, *Nature Rev. Phys.* **1** (2019) 527.
[2] P. Moskal *et al*, *EJNMMI Phys.* **7** (2020) 44.

Around 30% positron annihilates after forming Ps *in vivo*, and the lifetime depends on

- free volume
- oxygen [This talk.]
- bio-active molecules (radicals)
- ... possibility as biomarker.

o-Ps Quenching paths

- 1. Pick-off
- 2. Electron exchange (unpaired electron)
- 3. Chemical bonding/trapping (PsO₂)
- 4. Spin conversion (spin-orbit)

Liquid experiments must remove O₂ gas by bubbling / freezepump-thaw.

[3] Y. Kino et al, J. Nucl. Radiochem. Sci. 1, 63 (2000) 63.

Motivation: hypoxia sensing

pO₂ in Liver

Measurements and Results

Samples

Counts vs pO₂ Resolution

Discussion

10⁸ counts possible?

↑ Activity

•this measurement: 200 kBq

•FDG-PET scan: 200 MBq

↑ Solid angle
• this: ca 5%
• whole-body scanner: >60%

 \downarrow Triple coincidence required

↓ Within 30 min

[9] S. R. Cherry, et al. J. Nucl. Med. vol. **59**, pp. 3–12 (2018).

Larger voxel available

The interior of the voxel is assumed to be uniform, and no information other than the averaged concentration is outputted. The lifetime components are separatable to output the lifetime and the amount of each component.

Inverse Laplace transform (CONTIN^[10])

$$\begin{cases} F(t) = \exp(-\lambda t) \\ f(x) = {}^{-1} \{F(t)\} = \delta(x - \lambda) \end{cases}$$

CONTIN (Video)

Timing resolution for lifetime spectroscopy

Background (random coincidence)

high quality delay cable. For the direct and inverted spectra there is a loss of signal due to conversion of signal events into randoms, so that the *measured* spectrum for a single exponential signal with decay constant λ as a function of time t has the form

$$(A \ e^{\pm \lambda t} + B) \ e^{-nt} \tag{1}$$

where A and B are constants, n the stop rate and the positive sign for λ applies to the inverted spectrum. The usual approximation $e^{-nt}=1$ is not sufficiently accurate when n is large.

[12] P. G. Coleman et. al, J. Phys. E, 5 (1972) 376.

With the stop couting rate, η , the probability having no stop until time, *t*, and having the stop in the next Δt :

$$\lim_{\Delta t \to \infty} (1 - \eta \Delta t)^{\frac{t}{\Delta t}} \cdot \eta \Delta t \to C_1 \exp(-\eta t) \qquad \because \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n = e$$

Compton camera technique

Compton camera

[13] E. Yoshida, Phys. Med. Biol., vol. 65, pp. 125013 (2020).

Absoluteness (SUV vs mmHg)

- **SUV** (standardized uptake value) depending on
 - scanner
 - protocol
 - corrections
 - reconstruction algorism
 - other situations.

GE Healthcare SUV=1: average radioactive concentration

- pO_2 in mmHg
 - enable comparison data between deferent protocols.

Summary

- A linearity between pO_2 and o-Ps decay rate was observed. (proportionality: $26.3 \pm 1.1 \text{ mmHg/}\mu\text{s}^{-1}$)
- 100M counts provides pO₂ resolution of 17 mmHg which is enough to discriminate hypoxia from normoxia.
- An inverse Laplace transform may divide Ps lifetime components for a larger voxel in Ps imaging.
- We are planning to combine PET with Compton Camera technique for Ps lifetime imaging.

[12] K. Shibuya, *et al., Commun. Phys.* **3**, 173 (2020). [OPEN ACCESS]

Backup Slides

