

Pore Architecture of Zeolitic Imidazolate Frameworks: An Investigation using Positron Annihilation Spectroscopy

Sandeep Kumar Sharma RCD, BARC skumars@barc.gov.in

Introduction

- MOFs, ZIFs and their pore architecture
- Issues with pore analysis of ZIFs

Application of positron annihilation spectroscopy in ZIFs

- Effect of external pressure
- Crystal size induced modifications
- Mixed ligand induced tuning of pore architecture
- Positronium diffusion in ZIF-8 films

Conclusions and outlook

Metal Organic Frameworks

RETICULAR SYNTHESIS OF MOFs

- MOFs are highly porous with very high surface area.
- Porosity is due to crystal structure.
- Pore size can be tuned using different metals and ligands.
- MOFs are thermally stable.

MOFs

• MOFs provide immense possibilities as a result of infinite combination of metals and ligands.

Nature 2003 PPC 12.5

Zeolitic Imidazolate Framework

M - IM - M

1

Si - O - Si **2**

ZIF-n	Composition	Net*	Zeolite [†]	<i>T/V</i> , [‡] nm ^{−3}	d,§ Å	N
ZIF-1	Zn(IM) ₂	crb	BCT	3.64	6.94	12
ZIF-2	Zn(IM) ₂	crb	BCT	2.80	6.00	12
ZIF-3	Zn(IM) ₂	dft	DFT	2.66	8.02	16
ZIF-4	$Zn(IM)_2$	cag	—	3.68	2.04	20
ZIF-5	$In_2Zn_3(IM)_{12}$	gar	—	3.80	3.03	20
ZIF-6	Zn(IM) ₂	gls	GIS	2.31	8.80	20
ZIF-7	Zn(PhIM) ₂	sod	SOD	2.50	4.31	24
ZIF-8	Zn(MeIM) ₂	sod	SOD	2.47	11.60	24
ZIF-9	Co(PhIM) ₂	sod	SOD	2.51	4.31	24
ZIF-10	$Zn(IM)_2$	mer	MER	2.25	12.12	24
ZIF-11	Zn(PhIM) ₂	rho	RHO	2.01	14.64	48
ZIF-12	Co(PhIM) ₂	rho	RHO	2.01	14.64	48

PNAS 2006 (103) 10186-10191

ZIF-8

Single crystallography: Central cavity of 1.16 nm connected through 0.34 nm

Gate Opening: Flexible framework

Pore size determined using N₂ adsorption does not match the crystallographic data.

Pressure induced Irreversible amorphization Amorphous phase remains porous.

J. Am. Chem. Soc. 2009, 131, 17546-17547

• Retention of Zn-N tetrahedral arrangement in amorphous state.

Positron annihilation lifetime measurements:

Lower pressure: Partial collapse of open volume

Higher pressure: Cataclysmic modifications

Amorphous phase:

Continuous random network of open volume of broader size distribution

Sharma et al. J. Phys. Chem. C 123 (2019) 22273-22280

Flexibility is reduced with reduction in crystal size
Pore size distribution of solvated crystals ??

• Nanocrystals are more flexible.

ACS Nano Letters 19 (2019) 6140-6143

Thermal analysis

- Decomposition temperature remains nearly invariant.
- Thermal stability of nanocrystals is similar to larger crystals.

- No impurity phase.
- No additional phase transition.
- Decomposition of ZIF-8 ~ 750°c.

100

90

80

Z1~ 14 nm Z2~ 45 nm Z3~ 100 nm Z4~200 nm

Z5~ 1.4 µm

400

Temperature (^OC)

600

800

1000

200

Sample Mass 09 00 08

\$ 50

40

30

- Nanocrystals shows broader endothermic peak corresponding to decomposition.
- Surface characteristics architecture and pore of nanocrystals are different.

Positron annihilation lifetime measurements:

Pore interconnectivity is altered with crystal size.

- Average size is different from crystallographic size.
- Defective crystals during synthesis.

Nanocrystals have Zn enriched surface.

Delayed gate opening due to restricted pore aperture.

Sharma et al. J. Phys. Chem. C 124 (2020) 25291-25298 PPC 12.5

Pore tuning of a stiffened phase using mixed ligand strategy is possible.

PPC 12.5

• Pore size determined using gas adsorption is not absolute due to framework-gas interaction induced pore openings.

• Pore size from theoretical modeling does not represent the average pore sizes.

Morphology of ZIF-7_x-8 frameworks:

blm is incorporated in ZIFs preferentially.

PPC 12.5

- Peaks from blm and 2-mlm are present in all the samples.
- NMR also confirms presence of both the ligands.
- Single morphology of each sample.

The synthesized ZIF- 7_x -8 frameworks are single phase materials having randomly distributed ligand and not the mixture.

- The pore size for pure ZIF-7 and ZIF-8_Cm match very well.
- The pore size varies with bIm ligand incorporation.
- Intensity does not follow the admixture rule of two components confirming that material is single phase.
- Pore interconnectivity is also hampered in mixed ligand network.

Dielectric constant and applicability of the films will depend on the pore architecture.

<u>Chem. Mater. 25 (2013) 27-33.</u> 18

- ZIF-8 can be deposited at room temperature.
- ZIF-8 nuclei density increases in initial cycles and thickness growth occurs in later cycles.
- Preferential growth occurs in (002) direction.

XPS analysis:

• ZIF-8 nanocrystals surface (~ 3-4 nm) are enriched by Zn as compared to Imidazolate.

• Nanocrystals have different gas adsorption characteristics as compared to large size.

- Initial cycles: Annihilation from the particles surface or particle-substrate interface.
- Later cycles: Peak in S-parameter profiles shows positronium diffusion to interface
- Positronium diffusion length: ~ 1.4 micrometer which is consistent with literature.

On annealing: Collapsing of pore interconnectivity starts before the lattice decomposition

Sharma et al. Mic. Meso. Mater. 307 (2020) 110519

Conclusions and outlook:

- Positron annihilation spectroscopy is highly useful for experimental investigation of pore architecture
- ZIF-8 porosity depends on the external stimuli such as temperature, pressure and crystal size
- Pore size and porosity can be fine controlled using different strategies making ZIF-8 suitable for gas storage and gas separations.
- A systematic comparison of PAS data with other technique is required to establish the findings (gas adsorption does not work).
- ZIFs are proposed to be used in the form of membranes; pore aperture size using positron beam close to surface will be highly relevant for the gas separation efficiency.

Acknowledgement

Mr. Pranav Utpalla Dr. K. Sudarshan Mr. Jaideep Mor Dr. J. Bahadur Mr. U. K. Goutam

Dr. P. K. Pujari and colleagues

Thank you