
Influence of molecular geometry on positron 

binding to molecules* 

J. R. Danielson 

*This work supported by US NSF grant PHY2010699 

Department of Physics, University of California San Diego 

PPC12.5 (Virtual) 

3 September 2021 

In collaboration with S. Ghosh, A. Swann, 

G. Gribakin, and C. Surko  



o Low energy positrons are observed to bind to most polyatomic molecules. 

           Downshift of vibrational Feshbach resonances provide a direct measurement of 

                the positron-molecule binding energy, EB. 

          EB has been measured for > 90 molecules, covering a wide variety of species, 

              symmetries, and composition. 

 

o Ab-initio calculations of EB are very difficult, thus we often make empirical fits to the data 

using global parameters (e.g., polarizability, dipole moment), but these often fail when 

making new predictions. 

 

o Here, we discuss 2 studies: 

 1) Select group of isomer molecule pairs that demonstrate the strong effect  

 that molecular geometry appears to have on the binding energy 

 2) Large study of molecules with chlorine substitutions that demonstrates how  

 effective potential model combined with the full geometry can  

 capture these effects. 
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RPA measurement of total energy spread of beam 

Parallel Energy FWHM ~ 25 meV 

Perpendicular Energy ~ 20 meV 

Total Energy Spread ~ 40 meV 

Tunable from 50 meV < 0 < 100 eV 

High resolution positron beam* 
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*Barnes (2003), Natisin (2015) 
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Using dipole active vibrational modes and the 

known beam distribution, can fit the VFR’s for 

each molecule  shift gives B. 
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For some recent modeling of the alkanes, 

see Swann  and Gribakin, PRL (2019) 
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Key Result: 
The molecule with the substitution closer 

to the middle has a larger EB. 
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The geometry (shape) of the molecule also 

plays an important role in determining EB. 

OH 
CO 
OCO 
Cl 

Generic trends: 
EB increases with a 
EB increases with m 
EB decreases with IP 

But this is not enough! 
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o EB data for 14 molecules with various levels of chlorine substitution 
 

o Use effective potential model to calculate EB and positron wavefunction.  

*Swann et al. (2021) 
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*Swann et al. (2021) 

o EB data for 14 molecules with various levels of chlorine substitution 
 

o Use effective potential model to calculate EB and positron wavefunction.  
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*Swann and Gribakin (2020) 

Molecule treated in the Born-Oppenheimer approximation, electronic structure 

found from static Hartree-Fock with 6-311++G(d,p) Gaussian basis, obtaining the 

double occupied electron orbits, ji(r) . 

Solve the Schrodinger equation 

Potential given by two parts 

Correlation energy from bond 

polarizability (a) and cutoff (rA) 

Electrostatic potential 
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Key feature – includes the full molecular geometry 

atoms electrons 



 BCl r 24.2

 BCl r 20.2
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Choose cutoff: 

Result: Overall agreement is pretty good 

*Swann et al. (2021) 
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*Swann et al. (2021) 

Certain geometries enable the positron to sample more 

of the molecule and leading to a higher binding energy. 
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Choose cutoff: 

*Swann et al. (2021) 
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*Swann et al. (2021) 

Calc: EB = 49 meV Calc: EB = 51 meV 

Calc: EB = 120 meV Calc: EB = 175 meV Calc: EB = 140 meV Calc: EB = 190 meV 

As before, the molecule with the substitution 

closer to the middle has a larger EB. 

butane isobutane 
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*Swann et al. (2021) 

o EB data for 14 molecules with various levels of chlorine substitution 
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o EB data for 14 molecules with various levels of chlorine substitution 
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o EB data for 14 molecules with various levels of chlorine substitution 
 

o Clearly, the global parameters are not enough! 
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Suzuki, Otomo, Iida, Sugiura, Takayanagi  and Tachikawa, Phys. Rev. A 102, 052830 (2020). 

 

Effective potential calculations 

Swann  and Gribakin, J. Chem. Phys. 149, 244305(2018) 

Swann  and Gribakin, Phys. Rev. Lett. 123, 113402 (2019) 

Swann  and Gribakin, J. Chem. Phys. 153, 184311 (2020) 

Swann  and Gribakin , Phys. Rev. A 101, 022702 (2020) 

Swann, Gribakin, Danielson, Ghosh, Natisin  and Surko, Phys. Rev. A 104, 012813 (2021) 

 

Machine-learning predictions of positron binding to molecules 

Amaral and Mohallem, Phys. Rev. A 102, 052808 (2020) 

 

Many-body theory of positron binding to polyatomic molecules 

Hofierka, Cunningham,  Rawlins, Patterson  and Green, arXiv preprint 2105.06959 (2021) 

alkanes 

includes virtual 

positronium! 



For more information, visit 

positrons.ucsd.edu 
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o Using a select group of molecules it was shown that the molecular geometry has a significant effect 

on the binding energy that cannot be captured by using average molecular parameters  

  parametric fits are unlikely to provide an adequate description. 

 

o Recent theoretical work using model potentials are having good success, in particular when they use 

the full molecular geometry in the calculation. 

 

o Looking at broader range of molecules, including analysis using other molecular parameters (e.g., 

molecular orbitals, ionization potential, quadrupole moments, etc.), and combined with model 

potential calculations may enable new understanding of the positron-molecule interaction. 

 

o Next up – focus on understanding the spectra (VFR amplitude) using the cryo-beam. 

 (See Soumen Ghosh poster #6) 


