Hyperfine resonance of positronium using a static periodic magnetic field

<u>Y. Nagata¹</u>, K. Michishio², T. Iizuka¹, H. Kikutani¹, L. Chiari³, F. Tanaka¹, Y. Nagashima¹

 ¹ Department of Physics, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo 162-8601, Japan
 ²National Metrology Institute of Japan, National Institute of Advanced Industrial Science and Technology (AIST), Umezono 1-1-1, Tsukuba, Ibaraki 305-8568, Japan
 ³Department of Applied Chemistry and Biotechnology, Chiba University, 1-33 Yayoi, Inage, Chiba, 263-8522, Japan

Atomic resonance using a static magnetic field Motion-induced resonace (MIR)

A. Haakeyama et al., Phys. Rev. Lett. 95, 253003 (2005)

• Oscillation frequency f = v/a.

a : period length

f: atomic velocity

• If *f* = atomic resonance frequeency

→ Motion Induced Resonance (MIR)

• MIR using a magnetic field was demonstrated only for \sim 1 MHz so far.

MIR using a crystalline field (electric field)

Crsytalline field

Okorokov effect (1965) Resonant coherent excitation(RCE)(1978)

Electric field : 100 GV/m →comparable to a high-intensity ultrashort pulse laser

- Manipulation of energy levels of highly charged ions (Ar¹⁷⁺ 1s→2p) [1]
- Polarization control of highly charged ions [2]
- Precise spectroscopy of Li-like U⁸⁹⁺ions 2s-2p transition (X ray region) [3] QED test (0.1%)

Disadvantage

Scattering with atoms in a crystal

(not suitable for positron)

[1] T. Azuma et al., Phys. Rev. Lett. 83, 528 (1999).

- [2] Y. Nakano et al., Phys. Rev. Lett. 102, 085502 (2009).
- [3] Y. Nakano et al., PRA 87, 060501(R) (2013).

Motivation

- Motion Induced Resonance (MIR) of Ps hyperfine structure (203 GHz) is observed by using energy-tunable Ps beams.
- First observation of MIR in the system of antimatter and exotic atoms.
- First observation of MIR in the sub-THz region

(Ps hyperfine transition frequency 203 GHz was observed indirectly [1], or directly using a strong milli-wave source [2].)

[1] A. Ishida et al., Phys. Lett. B 734 (2014) 338.
[2] A. Miyazaki et al., Prog. Theor. Exp. Phys., (2015) 011C01.

Concept of the experiment

MIR of Ps hyperfine structure (203 GHz)

Resonance width of MIR

Fourier transform for N cycles

$$F(w) \propto \left| \int_0^{NT} \sin(w_0 t) e^{iwt} dt \right|$$
$$= \left| \frac{2w_0}{w^2 - w_0^2} \sin\left(\frac{wNT}{2}\right) \right|$$

 $\omega = \omega_0 + \delta \omega$ Expansion with respect to $\delta \omega$

$$|F(\delta w)| \sim \frac{\pi N}{w_0} \left(1 - \frac{(\delta w NT)^2}{24} \right)$$

Condition for FWHM $|F(0)|/2 = |F(\delta w)|, \ \delta w \sim \frac{\sqrt{12}f_0}{N}$

FWHM= $2\delta w$

Resonance width = FWHM / $\omega_0 \sim 1/N_{\odot}$

Concept of the experiment

MIR of Ps hyperfine structure (203 GHz)

Multi-layered magnetic grating

Period length 90 μm (Carbon steel 50 μm^t , Copper 40 μm^t) 10 layers

- Magnetization by SmCo magnets.
- Assembly by diffusion bonding vacuum hot press.
- Slots made by electrical discharge machining.

Y. Nagata et al., Phys. Rev. Lett. **124**, 173202 (2020)

8

Static periodic magnetic field calculated

Amplitude 0.12 T is enough to induce Ps hyperfine resonance.

- Amplitude 0.12 T. Power cB²/2μ₀~100 MW/cm². (Fabry perot cavity by a strong milliwave source 10 kW/cm², reported in [A. Miyazaki, Ph.D. Thesis, The University of Tokyo, 2013])
- Bias field ~1 T

Y. Nagata et al., Phys. Rev. Lett. **124**, 173202 (2020)

Ps hyperfine transition frequency expected

Hyperfine transition of Ps $(1^{3}S_{1}-1^{1}S_{0})$ in the magnetic field of 1 T

 $|1,0\rangle \rightarrow |0,0\rangle$: 211 GHz @1T

 $|1,1\rangle \rightarrow |0,0\rangle$: 207 GHz @1T $|1,-1\rangle \rightarrow |0,0\rangle$: 207 GHz @1T

The resonance frequency is 207 GHz and 211 GHz

10

[1] A. P. Mills, Jr. and E. M. Gullikson, Appl. Phys. Lett. 49, 1121 (1986).
[2] C. M. Surko and R. G. Greaves, Physics of Plasmas 11, 2333 (2004);
[3] K. Michishio et al., Rev. Sci. Instrum., 90, 023305 (2019)

Main part of our experimental setup

Micro channel plate (MCP) With a delay-line anode

TOF spectra of MCP signals

The γ ray background was decreased by a TOF cut and further decreased by a position cut.

Ps beam profiles

Y. Nagata et al., Phys. Rev. Lett. **124**, 173202 (2020)

14

Experimental results

(1) Resonance was observed at around 210 GHz.

(2) The counts have a slope.

(3) The counts exceed 1.

Y. Nagata et al., Phys. Rev. Lett. **124**, 173202 (2020) ¹⁵

Fit model

(1) Slope (multi-hit events are removed)

- Number of multi-hit events \propto Ps intensity $\propto C \exp(-\frac{t}{479 \text{ [ps]}})$ (Ps⁻ lifetime τ =479 ps)
- t = L/v, v = fa, B: fit parameter
 - *L* : effective length(between a W foil and a laser, 18 mm)
 - a: period length, 86.4 um
 - *f*: frequency of oscillating field

(2) Normalized counts > 1

- Ps beam diverges gradually.
- Transmission efficiency is not determined precisely.
- Fit parameter ε

Fit model =
$$\varepsilon$$
 (Gaussian +1) / slope function,

$$I(f) = \varepsilon \left(A \exp \left(-\frac{(f - f_0)^2}{2\sigma^2} \right) + 1 \right) / \left(1 - C \exp \left(-\frac{L}{fa\tau} \right) \right)$$
Fit parameter $A, C, f_0, \sigma, \varepsilon$.

Experimental results

- Resonance center: $211.5 \pm 1.9 \text{ GHz}$
- FWHM 16 ± 5 GHz (estimation: 210 GHz/10 ~21 GHz)

Y. Nagata et al., Phys. Rev. Lett. **124**, 173202 (2020) ¹⁷

Calculation of the transition from o-Ps to p-Ps

 $|0,0\rangle, |1,1\rangle, |1,0\rangle |1,-1\rangle$ Basis set

Density operator

$$\rho = \frac{1}{3} \left| 1, 1 \right\rangle \left\langle 1, 1 \right| + \frac{1}{3} \left| 1, 0 \right\rangle \left\langle 1, 0 \right| + \frac{1}{3} \left| 1, -1 \right\rangle \left\langle 1, -1 \right|,$$

Hamiltonian

$$H_0 + H_1 = \begin{pmatrix} E_s & \sqrt{2\mu_B B_x} & -2\mu_B B_z & -\sqrt{2\mu_B B_x} \\ \sqrt{2\mu_B B_x} & E_t & 0 & 0 \\ -2\mu_B B_z & 0 & E_t & 0 \\ -\sqrt{2\mu_B B_x} & 0 & 0 & E_t \end{pmatrix}$$

1-

~ La.

~ tai

Schrödinger equation

$$i\hbar\dot{\rho} = H\rho - \rho H - i\hbar\dot{L} \qquad L = \begin{pmatrix} \gamma_s\rho_{11} & \frac{\gamma_s + \gamma_t}{2}\rho_{12} & \frac{\gamma_s + \gamma_t}{2}\rho_{13} & \frac{\gamma_s + \gamma_t}{2}\rho_{14} \\ \frac{\gamma_s + \gamma_t}{2}\rho_{21} & \gamma_t\rho_{22} & \gamma_t\rho_{23} & \gamma_t\rho_{24} \\ \frac{\gamma_s + \gamma_t}{2}\rho_{31} & \gamma_t\rho_{32} & \gamma_t\rho_{33} & \gamma_t\rho_{34} \\ \frac{\gamma_s + \gamma_t}{2}\rho_{41} & \gamma_t\rho_{42} & \gamma_t\rho_{43} & \gamma_t\rho_{44} \end{pmatrix}$$

1-

The time evolution of the density matrix was calculated.

Experimental results and calculations

• Resonance center: 211.5 ± 1.9 GHz (Calculation 211.1 GHz)

Y. Nagata et al., Phys. Rev. Lett. **124**, 173202 (2020) ¹⁹

Summary

Motion Induced Resonance of Ps hyperfine structure was observed for the first time by using energy-tunable Ps beams and a multi-layered magnetic grating.

Resonance Center was 211.5 ± 1.9 GHz (211.1 GHz in Calculation).

Resonance width (FWHM) was 16 ± 5 GHz.

Atomic physics

• First observation of MIR for exotic atoms in the sub-THz frequency region.

MIR techniques

- Strong static magnetic field of 0.12 T, corresponding to around 100 MW/cm².
- Magnetic dipole transition can be induced (electric dipole forbidden).

Applications

- Measurement of polarization in Zeeman levels of an o-Ps beam.
- Other Ps transitions.
- Other atomic and molecular system.

Thank you for your attention.

This project was supported by Grants-in-Aid for Scientific Research of the Japan Society for the Promotion of Science (JSPS KAKENHI 17H01074 & 2604027 & 19K12645)